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O. INTRODUCTION

A Chebyshev center (T-center) of a set in a normed linear space is a single
point best approximating the set. The systematic study of T-centers was
initiated by Garkavi ([12, 13]).

Our interest lies in investigating the concept of a relative T-center. This
concept arises when the elements competing for closeness are restricted
to a prescribed family. We divide the discussion into two papers. In the
first one, we develop the connection between structural properties of relative
centers, convexity properties of the spaces, and the resemblance of the space
to a pre-Hilbert space.

Tn Section I we introduce the concept of strict convexity of a space E with
respect to a subspace F, and prove that the center of every compact set in E
with respect to F is at most one point iff E is strictly convex with respect to F
We then apply these results to establish that both C{J(T), and the space of
continuous functions endowed woth the Lcnorm are not strictly convex
with respect to any F with dim F ~ 2.

Another approach to the structural analysis is via the concept of uniform
convexity. We introduce the notion of uniform convexity of E with respect
to every direction in F (Deed-F). Generalizing work of Day et al. [7] and
Garkavi, we prove that the center of every bounded ACE with respect· to
F is at most one point iff E is Deed-F.
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Section 2 is devoted to the important special case of a relative center with
respect to F of a set containing two elements. This is exactly the question
of best simultaneous approximation that has been extensively studied in
recent years in a less general framework and from a different perspective
(e.g., [4, 5, 8, 10]). It is also strongly related to the question of vectorial
approximation (see, e.g., [14, 21]). We establish some general results for
such centers and relate them to the concept of inner product spaces. Extending
results of Rozema and Smith I25] and Garkavi I13), we prove in particular
that if the relative centers with respect to all two-dimensional subspaces
F of E intersect the line segments [P(F; 0), P(F; x)] then E is an inner product
space.

The final section contains characterizations of "homogeneously embedded"
subspaces in some important cases. It is shown that the property is quite
restrictive. In fact, in E = CIa, b) the sole homogeneously embedded finite
dimensional subspace is span 1. An analysis of the general C(T) and Lt(T; jL)
for a compact T, and a a~finite (1-, is also provided.

In the second part of this work, td be published separately, we develop
extensively the CIO, 1] theory of relative centers, establish uniqueness pro
perties, as well as methods for choosing the "best of the best" in cases of
nonuniqueness, and discuss continuity questions.

1. RELATIVE CENTERS AND CONVEXITY PROPERTIES

We start by describing the general set-up. Let A be a bounded set in the
metric space E, and Jet GeE be an arbitrary set. For x E E, we denote

rex, A) = inf{r: A C R(x, r)}

and define the relative Chebyshev radius of A in G by

r(G, A) = inf{r(x, A): x E G}.

(1.1)

(1.2)

Denote finally the set of relative Chebyshev centers of A in G by Z(G; A), i.e.,

Z(G; A) = {x E G: rex, A) = r(G, A)}. (1.3)

Observe that Z(G; A) is the set of centers, in G, of balls of minimal radius
covering A. In another context (cf., e.g., [10]) it is also called the set of best
simultaneous approximations to A from G.

In the special case where G = E, we speak about the (absolute) Chebyshev
radius rCA) and the (absolute) Chebyshev center Z(A). If A = {y} is a
singleton, then rex, A) = d(x, y), r(G, A) = d( y, G)-the distance from y



RELATIVE CHEBYSHEV CENTERS 237

to G, and Z(C; A) is the metric projection (or set of best approximations)
of y onto C, peG, y).

We will now record some properties of centers.

(a) Clearly, Z(G; A) is closed in G, and we have

r(G, A) = r(G, A), Z(G; A) = Z(G; A).

Assume henceforth that E is a normed linear space.

(b) We have r(G, conv A) = reG, A) and Z(G; conv A) = Z(G; A).

(c) If G is convex, then so is Z(G; A).

(d) IfE is a dual space, then Z(G; A) is w*-closed in C.

The structure of the center is tied to convexity properties of the spaces E
and G. We need the following generalization of strict convexity.

DEFINITION 1.1. The space E is said to be strictly convex with respect
to its linear subspace F if its sphere contains no segment parallel to F, i.e.,

111 x Ii = il y il = II x ~ y II = 1, x - Y E Fl ,,> X = y. (1.4)

We note that E is a strictly convex space iff it is strictly convex with respect
to itself. If E is strictly convex with respect to F, then it is obviously strictly
convex with respect to every G C F. Furthermore, in this case, each subspace
Eo , Fe Eo C E, is strictly convex with respect to F, and in particular F itself
is a strictly convex subspace. A converse relation exists, namely, if E is
strictly convex with respect to everyone-dimensional G C F, then E is strictly
convex with respect to F.

We now relate this concept to the size of centers in the subspace F.

LEMMA 1.2. The following statements are equivalent:

(1) E is strictly convex with respect to F.

(ii) For every compact set K, K C E, the center Z(F; K) is at most
a singleton.

(iii) For each pair x, YEO E, the center Z(F; {x, y}) is ar most a singleton.

Proof (a) (i) ~ (ii). We may assume that r(F, K) = l.

If z, w EO Z(F; K), then clearly (z + w)j2 E Z(F; K). Using the compactness
of K, it follows that there exists an x E K such that
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Since reF, K) = 1, it follows that /I x - z /I = /I x - w II = 1.
Since (x - z) - (x - w) = w - Z E F, the strict convexity of E with res

pect to F implies that w = z.

(b) (ii) =? (iii). Self evident.

(c) (iii) =? (i). Assume (i) does not hold. Let x, y be such that
Ilxll=IIY!l=I/(x+y)/211=1, and x-yEF, x#y. Then (x-y)/2
and (y - x)/2 both belong to Z(F; -(x + y)/2, (x + y)/2, i.e.,

Z (F' x - Y x +Y) . . I. - -2- '-2- IS not a smg eton.

We recall (see, e.g., [17, p. 109]) the definition of a semi-Chebyshev subset.

DEFINITION. A subset of a normed linear space E is semi-Chebyshev if
it contains at most one best approximation to every element of E.

Using Lemma 1.2, we immediately derive the following corollary, showing
the relation with strict convexity.

COROLLARY 1.3. If the space E is strictly convex with respect to F, then
F is semi-Chebyshev in E.

In the special case where F is one-dimensional, this can be strenghtened.
In fact, we have

LEMMA 1.4. If dimF = 1, then E is strictly convex with respect to F
if and only !fF is a Chebyshev set.

Proof Necessity is covered by the previous corollary. Assume now that E
is not strictly convex with respect to F = [z). Let now x, y be such that
x - y = et:Z E F, x =F y, and 1 = II xl/ = 1/ y 1/ = I/(x + y)/211. Then the line
y + t(x - y), - 00 < t < 00, is not a Chebyshev set, and therefore F
is not a Chebyshev set.

Using Lemmas 1.2 and 1.4, we now have

COROLLARY 1.5. The space E is strictly convex with respect to F if and
only ifeveryone-dimensional subspace ofF is a Chebyshev set.

Further results along these lines are available for special choices of E.

ASSERTION 1.6. The space Co(T) is not strictly convex with respect to
any subspace F with dim F ~ 2.

Proof If dim F ~ 2, then some z #- 0 in F has a zero, so that [z] is not
a Chebyshev subspace, and the assertion follows by appealing to
Corollary 1.5.
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ASSERTION 1.7. Let p, be any measure. Then L 1(11,) is not strictly convex
with respect to any subspace F with dim F :;?; 2. If fL is an atomless measure,
then L 1(fL) is not strictly convex with respect to any subspace.

Proof In the general L 10) space, the condition for [v] to be a Chebyshev
subspace is that

f v dp, ¥- I v dp" for each measurable A. (1.5)
A A'

Suppose E is n~dimensional, n > 2, and let v, wbe two linearly independent
elements. Let A be fixed. Then there exist iX, f3 such that

I (cxv + (3w) dfL = I (cxv + (3w) dfL·
A A'

Hence the one-dimensional subspace spanned by z = cxv + (3w is not a
Chebyshev subspace, and L1(p.,) cannot be convex with respect to F in view
of Lemma 1.5.

If fL is atomless, then the statement is a consequence of the fact that such
L 1(fL) has no finite~dimensionalChebyshev subspaces [23, p. I07J.

ASSERTION 1.8. The space (qa, b], II . ill) of continuous functions with the
L 1-norm is not strictly convex with respect to any F with dim F :;?; 2.

Proof In order that [v] be a Chebyshev subspace, we must have
f~ v dx =F O. As in the proof of the previous assertion, if F has two linearly
independent elements, then it has an element z such that S: z dx = O.

Concluding the discussion we provide now an example of a nonstrictly
convex E which is strictly convex with respect to F, where dim F > 1. Take
F as any strictly convex space, G an arbitrary, nonstrictiy convex space
and E = F X G, where the norm is a strictly convex norm on R2, such
as il . lip, 1 < p < 00.

Another approach to the relation between convexity properties and the
nature of the center is via a concept tied to uniform convexity.

DEFINITION 1.9. (a) The space E is said to uniformly convex with res
pect to every direction in F (Deed-F) if for every z, 0 ¥- Z E F and every € > 0,
there exists a (3 = (3(z, e) > 0 such that

II x II = Ii y II = 1, x - Y = '\z, II x t y II > 1 - (3 =>- I ,\ I < E. (1.6)

(b) the space E is uniformly convex with respect to F if for every e > 0
there exists a (3 > 0 such that

II x II = II y 1\ = 1, x - Y E E, II x - y il > € =>-11 x t y 1\ > 1 - 8. (1.7)
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Note that if E is Uced-F then it is strictly convex with respect to F. The
case of spaces which are Dced (i.e., where E = F) was investigated by Day
et aT. [7]. Garkavi [12] showed that E is Dced iff Z(A) is at most a singleton
for every bounded ACE. A straightforward generalization of Garkavi's
proof leads to the following result.

THEOREM 1.10. The space E is uniformly convex in every direction in F
ifand only ifZ(F; A) is at most a singleton for every bounded ACE.

Proof (a) Assume Z(F; A) is not a singleton, and let Yl , Y2 be two
distinct elements of Z(F; A). Then Yo = (Yl +Y2)/2 is also in Z(F; A).

Select now a sequence (xn) C A such that /),Yo - X n 11-+ r(F; A). Then
II Yi - Xn 11-+ reF; A) for i = 1,2. We may assume that /I Yl - X n 1/ ~

II Y2 - Xn Ii and take Zn = Yl + tn(Y2 - Yl) with tn ~ 1 chosen so that
1/ Zn - Xn II = II YI - Xn fl· Then Un = (YI - xn)/II YI - X n /I and Vn =
(zn - xn)J11 Zn - X n II satisfy II Un + Vn II -+ 2 while Un - Vn E F and it does
not tend to 0, so that the Dced-F condition is not satisfied.

(b) Conversely, assume E is not Deed-F. Then there exists an element
Z E F and two sequences (xn ), (Yn) such that

II X n JI = II Yn IJ = 1, I An I ? A > 0 and

n(xn + Yn)/211 -+ 1.

Let Un = (xn + Yn)/2, A = {±un ; n = 1,2,...}. Since Ii Un II -+ 1, it
follows that reF; A) = 1 and 0 E Z(F; A). However, we have also ±'Azj2 E

Z(F; A) since

Hence, Z(F; A) is not a singleton. Q.E.D.

A corresponding result is available for the case where E is uniformly
convex with respect to F, viz.,

THEOREM 1.11 (cf. [1,_ 2]). The space E is uniformly convex with respect
to F if, and only if the mapping A -+ Z(P; A) is single-valued and uniformly
continuous on bounded families of trapezoids (with respect to the Hausdorff
metric).

2. BEST SIMULTANEOUS APPROXIMATION OF Two ELEMENTS

Having discussed the general case and the relation of strict and uniform
convexity to the nature of the centers, we now turn our attention to the
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study of the case where A = {x, y}, i.e., the best simultaneous approximation
of two elements, This question has been extensively studied in recent years
in a less general framework and from a different perspective, (e.g., [4, 5,
8, 10, 21]).

We start with a simple observation.

LEMMA 2.1. Let E be a normed linear space, and let x, y E E, F a subspace
ojE. Suppose that u E Z(F; x, y). Then exactly one of the jollowing alternatives
holds:

(a) II u - x II = II u - y II,
(b) U E Z(F; x) and II u - x II > II u - y Ii,
(c) uEZ(F;y) and II U - YII > I! U - xii.

Remark. Recall that Z(F; x) = P(F; x) is the set of best approximations
from F to x (Le., the metric projection of x into F).

Proof Assume (a) does not hold, and that

II U - x II > 1\ U - Y II + E. (2.1)

Ifu f/: Z(F; x), choose v E Z(F: x), and consider W = U + E(V - u)(211 v - u Ii.
Using the fact that II v - x II < II u - x ii, and (2.1), we easily compute

iI W - x II = 112
E

I!vv-=-~ II + (1 - 211 v~ u II) (u - x) II

< E II v - x II + (1 _ E ) 11 - [' II _ II
'" 211 v - U II 211 v _ u II ,U X! < . U X i'

II w - Y II ~ II u - y II + (E/2) < II u - x II.

Hence, r(w; x, y) < II u - x II < r(u; x, Y), contrary to the assumption that
U E Z(F; x, y). Q.E.D.

This lemma indicates a procedure for finding an element of Z(F; x, y).
Compute first P(F; x) and P(F; y). If one of them is in Z(F; x, y) we are
through. If not, consider the line segment

[P(F; x), P(F; y») = {u: u = rxP(F; x) + (1 - rx) P(F; y), 0 ~ ex ~ I}. (2.2)

Choose an IX such that II U - x II = II U - y Ii. If this is in Z(F; x, y), we are
through. If not, the problem is reduced to a search in the set {v E F;
II v - x II = II v - y II}·

Obviously, the precedure would have been simpler if we could be sure that
Z(F; x, y) interesects the segment (2.2). We will show that this property is
closely related to E being an inner product space.

We start by noting that Rozema and Smith proved in (25] that if F is a
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linear subspace of an inner product space E, and A is a nonempty bounded
subset of E, then

Z(F; A) n conv [U {P(F; x); x E A}] =F 0.

Specializing to our case, we deduce the following proposition.

(2.3)

PROPOSITION 2.2. Let E be an inner product space and let F be a linear
subspace of E. Then

Z(F; x, y) n [P(F; x), P(F; y») =F 0

Garkavi [13) established that if F = E, then the validity of Z(E; A) n
[conv A] =F 0 for all nonempty bounded subsets A of E is equivalent to E
being an inner product space. We will prove that, in fact, the property that
the relative centers with respect to all two-dimensional subspaces F intersect
the line segments [P(F; 0), P(F; x)] is sufficient to ensure that E is an inner
product space.

Recall (see, e.g., [26, p. 93]) that F is a proximinal subspace of E if for
each element x E E the set PF(x) = P(F; x) of best approximants to x from
Fis not empty. We now introduce a new concept.

DEFINITION 2.3. Let E be a normed linear space and let F be a proximinal
subspace. The subspace F is homogeneously embedded in E if

{x E P1;l(0); y, Z E F; II y II = II Z II} => II x - y II = II x - z II. (2.4)

Here P F is the metric projection onto F and x E p;;l(O) means that
oE P(F; x) = PF(x).

Note that such F is homogeneously embedded in E iff it is a Chebyshev
subspace and the intersection of every sphere S in E with F is a sphere in
F centered at the best approximation of the center of S.

An example of such a subspace is F in the space (F E8 G)1J , 1 < p < 00,

where F and G are any normed linear spaces.

Notation. Let E be a normed linear space, and let x E E, r a positive
number. Then

SE(X; r) = {u: UEE, II u - x II = r},

SE = SE(O; 1).

THEOREM 2.4. Let F be a proximinal subspace ofthe normed linear space E.
Then the following statements are equivalent:
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(i) F is homogeneously embedded in E.

(ii) If y E F, y =f. 0 and x E pie y), then

II ~ II E P(SF; x).

243

(iii) For every convex subset A C F we have

PA = PAPF •

(iv) For every line L CF, we have PL = PLPF •

(v) For every segment ICF, we have PI = PIPF •

Proof (i) ~ (ii). Suppose y E F, where F is Chebyshev, y =f. 0 and
x E Pj/( y) and that ylll y II is not a best approximation to x from SF'

Choosing Z E P(SF ; x), we have

Ii x - z II < II x - Ii ~ II II· (2.5)

Let u be the point of intersection ofthe sphere {w; II w - y II = III y II - 1 IJ
and the segment [ y, z]. There exists such a point, since II z II = 1~ II y - z II ~
III y II - 1. We have II x - u II ~ II x - z II since y E PF(x); hence, using (2;5)
we conclude that the intersection of the sphere (in E) Sex; Ii x - ylll y lJ )1)
withFis not a sphere about the best approximant inFto x, namely, y. Thus, F
is not homogeneously embedded.

(ii) =9- (i). Assume that F is not homogeneously embedded. Let x E pZ;\O),
y, Z E SF and e > 0 be such that

II x - y II > II x - z Ii + 2e.

Define x' = (x + ey)/11 z + ey II, y' = 9/11 z + Ey II. Since 0 E Pp(x), it
follows thaty' E Pix'). On the other hand,

II
' y' II II x + ey II 1'1 x - Y(II Z + ey II - E) II

,x - ITYlI = II z + ey II - Y = II z + Ey II .

~ II x - y II - 2e > II x - z II = 'I x' _ z + y II
II z + ey II II z + ey II II II z + y il I

so that y'/ll y' II does not belong to pesF ; x'). Hence (ii) does not hold.
(iii) ~ (iv). TriviaL
(iv) ~ (v). Obvious.
(i) ~ (iii). Let A be a convex subset of F, and let x E pZ;\O). Appealing

to (i) we conclude that the Ii Y ii-sphere in F touches A at y if and only if the
II x - y Ii-sphere touches A at y. Thus, PA(x) = PA(O) = PAPF(X).
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(v) => (i). The proof of this implication, which is more complicated,
may be found, with a different terminology, in [3J.

COROLLARY 2.5. Let G and F be linear subspaces of the normed linear
space E and let G C F. The following inclusion and transitivity relations hold:

(i) When G is homogeneously embedded in E, it is also homogeneously
embedded in F.

(ii) When G is homogeneously embedded in F and F is homogeneously
embedded in E, then G is homogeneously embedded in E.

Proof (i) Obvious from the definition.

(ii) Observe first that if 0 E PG(x) and y = Pp(x), then, by part (iii)
of Theorem 2.4, 0 E PG( y). Since G is homogeneously embedded in F, the
metric projection of a singleton is a singleton. Hence °= PG( y).

Let now z E G. We have

SE~X, II x - z [0 n G = [SE(X, II x - z 101 n F n G

= Sp(y, II y - z 10 n G = SG(O, II z /0,

where the second equality follows from the assumption that F is homo
geneously embedded in E and y = Pp(x), whereas the third equality follows
from the similar assumptions concerning G in F.

We are now ready to relate the concepts of homogeneous embedding and
relative centers.

THEOREM 2.6. Let F be a proximinal subspace ofthe normed linear space E.
Consider the following statements:

(i) F is homogeneously embedded in E.

(ii) For all x, y E E and u E P(F; x), v E P(F; y) we have Z(F; x, y) n
[u, vJ :c;b 0

(iii) For all x E E and u E P(F; x) we have Z(F; 0, x) n [0, uJ:c;b 0.

Then (i) => (ii) =>- (iii). If the smooth points of Sp are dense in SF (this
happens, e.g., ifF is separable, by Mazur's theorem [18, p. 171]), then all
three statements are equivalent.

Proof (i) =>- (ii). Suppose Z(F; x, y) n [u, vJ= 0. Since u, v¢: Z(F; x, y)
it follows by Theorem 2.1 that there exists a point w, WE [u, vJ such that
II x - w II = II y - w II. Since w if Z(F; x, y) it now follows that there exists
a z, z EF such that max(ll x - z)lI, II y - z /I) < /I x - w /I. This means that z
is interior to the sets BE(x, /I x - w II) n F and BE( y, II y - w II) n F, where
Be(x, a) denotes the ball, in E, with center at x and radius a. However, if F
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is homogeneously embedded, then BE(x, Ii x - w 10 11 F = BF(u, II u - w \0
and BE(y, II y - w \1) 11 F = Biv, II v - w \1) and these two balls have dis
joint interiors. Hence our assumption is untenable.

(,i) oc> (iii). TriviaL

We assume now that the smooth points of 5F are dense in 5F , and set to
prove that (iii) oc> (i). Suppose F is not homogeneously embedded in E.
Then, by Theorem 2.4, there exists a point x E p;\o) and a segment
1= [y, z] C F such that z = PzCx), y = Pz(0) and II x - y II > 1\ x - z II + E.

With no loss of generality we may assume that II y I! = 1 and, in view of the
denseness, we may take y to be a smooth point of 5F' This implies that y
is a sm00th point of the sphere 5' with radius II x - y II about u =
(1 + il x - y 10 y. If Z' E [u, z) is such that II Zl - z Ii < E, then the segment
[z', y] must contain interior points of the Ii x - y ii-ball in F centered at u,
since otherwise the segments [y, z] and [y, z'] can be extended to supporting
hyperplanes of 5 F • Let v be such an interior point. Then rev; (u, x») <
r( y; (u, x)). Invoking Lemma 2.1, we conclude that

Z(F; u, x) 11 [u, P(F; x)] = 0.

The translation x' = x - u yields now

Z(F; 0, x') 11 [0, P(F; x')] = 0.

Hence, (iii) does not hold.
We return now to the relation to inner product spaces. Note that Joichi

[19] characterized inner product spaces as the spaces for which every two
dimensional subspace is homogeneously embedded (without using this
concept). This property may be deduced from other characterizations of
inner product spaces (see [3]). Using this chracterization, we deduce

COROLLARY 2.7. A normed linear space E is an inner product space if,
and only (f

Z[F; 0, x] 11 [0, y] #- 0, for all x EO E, Y E P(F; x),

where F is any two-dimensional subspace.

Remark. There are various other characterizations of pre-Hilbert spaces
It might be interesting to establish.a hierarchy between these characteri
zations. For example, the "Pythagorean" condition

x EP-;\O),
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is stronger than homogeneous embedding, while the condition

X E r/(O), Y E F => II x + y If = Ii x - y II

is weaker, and so is the symmetric orthogonality condition x -L F => F -L x.
We will not pursue here this approach.

3. CHARACTERIZATIONS OF HOMOGENEOUSLY EMBEDDED SUBSPACES

This section will be devoted to the analysis of homogeneously embedded
subspaces. We will see that this property is quite restrictive, and in fact in
E = C[a, b] or even E = C(T), where T is any compact metric space, the
structure of homogeneously embedded finite-dimensional subspaces is very
simple. A complete characterization is then given for homogeneously
embedded dosed subspaces of E = LlT, p..).

We start with the simplest case of E = Cra, b].
The property of being homogeneously embedded is quite restrictive. In

fact, we have

THEOREM 3.1. The sole homogeneously embedded finite..,dlmensional sub
space of C[a, b] is span 1.

Proof We observe first that if F = span 1 and x E P'i1(O), then II x II =
max x(t) = -min x(t). If II Y [I = II z II, y, Z E F, then y = ±c, z = ±c.
Since we have II x + ell = II x - ell = If x /i + I c j, it follows that F is
homogeneously embedded.

To prove the converse, it suffices to restrict attention to Chebyshev sub
spaces. Assume F is an n-dimensional Chebyshev subspace of C[a, b] and
let U E F be a function which does not reduce to a constant. Let max u(t) 
min u(t) = 0 > 0, and set A = {t; Iu(t)1 ;? II u II - oj3}. Choose a sequence
to < ... < tn in AC and construct now a function x E C[a, b] satisfying

IIxJj = /luI!,
x(t) = u(t), for tEA,

XCti) = (-1)i II u II, i = 0, ... , n.

(3.1)

Since F is an n-dimensional Chebyshev subspace, and we have n + 1
points of alternance for x - 0, it follows that x E Pp1(O). Observing that
[I x + U II = 2/1 U II, while II x - u II ~ 2Uu II - (0/3), it follows that (2.4)
is not satisfied, i.e., that F is not homogeneously embedded. Q.E.D.

When we pass to the general C(T) case, the restrictive nature persists,
but the proofs are substantially more complicated.
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THEOREM 3.2. Let T be a compact metric space. The only nontrivial
homogeneously embedded finite-dimensional subspaces of q T) are the one
dimensional subspaces spanned by functions v, with I v(t)I = 1.

Proof Let F be a proximinal subspace of C(T). Then x E pp\O) if for
every y E F there are s, t in the peak set K", of x, K", ={w: i x(w)I = II x II},
such that

xes) yes) x(t) yet) ~ 0 (3.2)

This is analogous to the Kolmogorov condition (see, e.g., [26, Chap. 2]) and
is similarly proved. This observation implies that the condition x E pp\O)
is in reality a condition involving only the sets K",+ = {w: x(w) = II x II},
K",- = {w: x(w) = -II x II} and F restricted to these sets.

Suppose now that I v(t)I = 1 for every t E T and let x E P[;~(O). Then we
can easily verify, using (3.2), that

II x + v II = II x - v II = II xii + II v Ii·

Hence, [v] is homogeneously embedded.
Consider next pairs of disjoint closed sets in T, (KO, KI), such that for every

y E F there exist-s E Ki; t E Ki; i,j E {O, I}, for which

(-l)i+i yes) yet) ~ o.

The family of all such pairs of sets, ordered by

(3.3)

iff KO C Vi, KI C D,

has lower bounds for chains. Indeed, let (KIXO, KCnlXEA be an infinite chain with
s'" E Ki{rx), t IX E Kj{rx) the corresponding points satisfying (3.3) for a fixed
y E F. A compactness argument produces a subnet such that i(f1) = i,
j(f3) = j, Sa -;.. SEn KIXO, ta -;.. tEn K/. We obviously have then
(-l)i+i y(s)y(t) ~ O. Thus, (nKrxO, nK/) is a lower bound.

Appealing now to Zorn's lemma, we conclude that there exists a minimal
pair (:;("0, :;("1) in T. Observe now that the function x(t) defined by

d(t, :;("0) - d(t, :;("1)
x(t) = d(t, :;("0) + d(t, :;("1)

satisfies K",+ = :;("0, K",- = :;("1. Using (3.2) and the definition of :;("0, :;("1,

we conclude that x E p:;l(O).
We will now establish the following simple lemma.

LEMMA 3.3. Let F be homogeneously embedded in CCT), and let y E F,
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o # X E piCO). Then Xx n Xy =P' 0 and there exist 8, t E K re n K y such that
(3.2) is satisfied.

Proof If Km() Ky = 0; then II Y JI > II Y 11K = sup{l y(t)I; t E KaJ, and
:>:

we may assume that Ii x II < i(11 Y II - 11 y 11K)
II:

Thus

IIY ± x II> Hlly If + IIY 11K.,) > Ily ± x 11K""

and therefore

II y ± x II = II y ± x IITIK", .

However, on the set T\Kx we may replace x by x + h, where h is supported
in a neighborhood of KY-t-x and satisfies II x + h II < iell y II ~ II Y 11K). We
then have x + h EO P;\O) while II x + h + y II =1= II x +h - Y II, which is
impossible since F is homogeneously embedded.

Hence, Kw n X y * 0,

)/ x + Y II = II x - y II = max(/I x + y II, JI x - Y 10 = 1/ x IJ + JI Y'II

and there exist s, t E Xx n Kif such that

yes) yes) x(t) yet) < o.

Returning to the minimal pair (Jt"0, Jt"l) we denote now Jt"O U offl = Jt".
We note that the restriction from T to :f is, by the proof of the lemma, an
isometry ofF into C(:f). By Dugundji's theorem (see [9) there exists a linear
isometry u: C(:;f)~ C(T), such that ufis an extension ofjforevery fE C(.;t").
By Corollary 2.5(i), F is homogeneously embedded in uC(.;t"). Since the
restriction from T to :f is an isometry, it suffices to discuss the case T = .%.
The possibility of multiplication by h(t), where

h(t) = 1,

= -1,

which is an autoisometry of C(.;t"), shows that we may assume :Yl' = .%0.
Using the minimality of.Yl' we conclude that for every nonempty open U

there exists an element y E F, Ii y JI = 1, such that y < 0 in '%\ U, and y
attains its norm in U.

On the other hand, every y E F must attain both II y /I and - II y /I in :f.
Thus, if U1 n V2 = 25, and Vi are open nonempty sets, the corresponding
Yi (whose norm is 1) satisfy /I Y1 - Y2/1 > 1. Hence, there are only finitely
many such U/s, and therefore ff is finite. Hence, each {t} is an open set,
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and for each t E :% there exists y E F, [I y il "'-"co 1, with K l1 '- = {tv and such that
yes) < 0 for s ~ t. Let such a y be denoted by Js . Define the set c-(t) by

o{t) = {s: y E F, y(t) = 1\ Y II ~ yes) = -- I Y!i}.

Observe that aCt) =!= 0 for each t E.Yt. Indeed, if Y:: ,... , X" E F satisfy
y~(t) = :1 y, Ii, then necessarily

l' n ,n "

;i L Yi!) = I Yi(t) .c= ~ I ),J5)
"i=l ,=1 ,~l

for some s. Hence, y,(s) = ~ II y, II, for i = 1,.,., i1, and by compactness
o{t) -:-F 0.

Note that if S E aCt), then t E a(s). Indeed, if there is a pair for which the
statement is false, there exist Ys ,)it such that Ii Ys - Yt ii =·2 = (YB- Yt)(S'1
but )Is - )it does not take the value -2. Let now t1 ¥~ t2 • If there exists a
point S E a([l) n cr(tz), we choose }\, Yt

2
as above and obtain

while 1't -I- Vt does not take the value 2.. This IS impossible, implymg
• 1 - 2

a(tl} (', a(tz) = 0; and we conclude that the mapping t -~ G(t) is an invc>-
lution of .Yt onto itself.

For each y E F and t E:f{" we have y(t) = - Y[(o-(l)]. We assume now thaI
:1 J' II =""-"= 1, yet) > 0 and consider y + J't ' which also peaks at t. \Ne have

y[a(t)] -- Yt(t) = y[a(t)) + Yt[a(t)] = (y T yD[a(r)J

= -( Y -+- J't)(t) =- -Yt - Yt(l),

Thus, F is a subspace of

Cu(J1") ={[E C($);j(t) ~= -na(t)], for aU t E ,Arl.

If y(" contains more than two points, we choose Z E C(Jf") with

and we have

z(s) = :1 z ii = 1, z~a(s)} = z[aW1 = 0

d(~, F) ~ d[z, e,iK») = i.

On the other hand, if y EFpeaks at s (i.e., ! yes); c= '.I J (I) then

d(z, i)>} = ~ = d(z, !-Y +- Ell)
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for every E" > 0 small enough, and each u peaking at t. We conclude that F
is not Chebyshev unless :x: consists of two points only s, t and F = span v
for some v E C(T) satisfying II v II = v(s) = -vet).

Since the same argument is valid for every minimal $' for span D, it follows
that v cannot vanish (if v(to) = 0, then the singleton {to} is minimal for v),
and therefore I v(t)/ = Ii v If for every t E T. Q.E.D.

It is well known that C[a, b] has no Chebyshev subspaces offinite codimen
sion ~2. In the general C(T) case, finite codimensional T-subspaces exist.
However, we have the following theorem.

THEOREM 3.4. Let T be an infinite compact Hausdorff space. Then C(T)
contains no finite codimensional homogeneously embedded subspaces.

Proof If F is an n-codimensional T-subspace of C(T), then for every
nonzero fL E F1.. we have card (T\supp fL) < n [22]. Thus, if x E PileD) and
II x II = 1, it follows that r x(t)j = 1 except for m points tl , •.. , 1m , with m < n.
We may now assume that {t; x(t) = I} is an infinite open set. Choose in this
set 12 + 1disjoint infinite open sets Uo ,... , Un . Let Uo ,.••, Un be corresponding
Urysohn functions, satisfying

on an open infinite set Vi .

Let fLl ,... , fLn be a basis of F1.. and let !Xo , ... , !Xn be a nontrivial solution to

n

L CitfL;(Ui) = 0,
i=O

j = 0, 1,..., n.

We may assume max j !Xi I = max Cii = i. Moreover, by modifying a Ui ,

if necessary, we may assume that 1min !Xi I *- 1. Then y = :L:l CiiJ'i EF
satisfies

II x + y II = 2 > 1 + I min !Xi I ~ II x - y II·

Hence. F is not homogeneously embedded in C(T). Q.E.D.

We pass next to the Lrcase. A complete characterization of the
homogeneously embedded closed subspaces is available, viz.,

THEOREM 3.5. Let E = LiT, p.) where p. is a a-finile measure; then Ihe
jollowing statements are equivalent for a closed subspace F of E.

(i) F is homogeneously embedded in E.

(ii) F = {u E E: u(/) = 0 a.e. (p,) on A} for some measurable ACT.

(iii) E = (F EB G)1 ,for some subspace G.
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Proof (i) => (ii). We observe first that, in L1(T, ft), x E p;:l(O) iff

[IT sgn xU) yet) dfL(t) f ~ J,;;-1(0) Iy(t)1 dp,(t),
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(cf. [26, p. 46]). The dependence of this inequality on x is via the sgn x
function only. If x E pp\O), y EF and p,[(supp x) (\ (supp y)] > 0, we may
assume, after multiplying by a scalar, if necessary, that yet) - E > x(t) > 0
on some set B with p,(B) > O.

If ii x + y Ii = Ii x - Y Ii we may replace x by x' = x + U, where U E E
satisfies u ~ 0, llull > 0, u is supported in B and x + u < y on B. Then
x' E PJ;\O), but

II x' + Y II = II x + Y \I + II u II 7'= II x + y II - II u Ii
= II x - y It - II u If = II x' - y il·

This is inconsistent with the assumption that F is homogeneously embedded.
Hence p.[(supp x) (\ (supp y)] = °for every x E Pp1(O). Y E F. Let now A
be a set of maximal measure such that p.[A (\ (supp y)] = 0 for ail y E F.
Then each x E Ppl(O) is supported in A, while each y E F is supported in
C = T\A. If U E E is supported in C, then so is also v = u - PEll E PINO).
Hence v = 0 and U E F. Thus

F = {u E E: supp II C C} = {u E E: u{t) = 0 a.e. (p,) on A}.

(ii) ~ (iii) ~ (i) are immediate.

We close with a discussion of C(T) endowed with an L1 norm.

Q.E.D.

THEOREM 3.6. Let E = (C(T), ii . IILl(I~))' where T is a connected locally
compact Hausdorffspace T and f-L is a Radon measure. Then E has no nontrivial
homogeneously embedded subspaces.

Proof Following the arguments used in the proof of the previous
theorem, we find that a homogeneously embedded subspace Fmust be of the
type

F = {u E E: u(f) = °a.e.(jL) on A}

for some measurable ACT. If ft(A) 7'= 0 and JL(T\A) = 0, such an F cannot
be proximinal since the function 1 does not have a best approximation
in F. Q,E.D.
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